Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res Perspect ; 10(1): e00924, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35106949

RESUMO

Gefapixant (MK-7264) is a first-in-class, selective antagonist of the P2X3 purinergic receptor currently being investigated as a therapeutic agent for the treatment of refractory or unexplained chronic cough. In non-clinical studies, gefapixant was eliminated primarily by renal excretion of the parent drug. The objective of this study was to assess the disposition of gefapixant in humans. The absorption, metabolism, and excretion profiles of gefapixant were assessed after oral administration of a single dose of [14 C]gefapixant to six healthy adult males. Following a single-oral [14 C]gefapixant dose to healthy adult males, the mass balance was achieved, with 98.9% of the administered radioactivity recovered in urine and feces. Elimination of gefapixant occurred primarily via renal excretion of the intact drug (64%); metabolism was a minor pathway of elimination of gefapixant (12% and 2% recovered in urine and feces, respectively). Single-dose administration of [14 C]gefapixant 50 mg was generally well tolerated in healthy adult males. The fraction of the anticipated therapeutic oral dose of gefapixant absorbed is estimated to be at least 78%. Gefapixant is expected to be the major circulating drug-related material in plasma, and the majority of the dosed drug will be excreted unchanged in urine.


Assuntos
Antagonistas do Receptor Purinérgico P2X/farmacocinética , Pirimidinas/farmacocinética , Sulfonamidas/farmacocinética , Administração Oral , Adulto , Radioisótopos de Carbono , Humanos , Masculino , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Antagonistas do Receptor Purinérgico P2X/efeitos adversos , Pirimidinas/administração & dosagem , Pirimidinas/efeitos adversos , Receptores Purinérgicos P2X3/efeitos dos fármacos , Sulfonamidas/administração & dosagem , Sulfonamidas/efeitos adversos , Adulto Jovem
2.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638992

RESUMO

Amyotrophic lateral sclerosis (ALS) is a disease with a resilient neuroinflammatory component caused by activated microglia and infiltrated immune cells. How to successfully balance neuroprotective versus neurotoxic actions through the use of anti-inflammatory agents is still under debate. There has been a boost of awareness regarding the role of extracellular ATP and purinergic receptors in modulating the physiological and pathological mechanisms in the nervous system. Particularly in ALS, it is known that the purinergic ionotropic P2X7 receptor plays a dual role in disease progression by acting at different cellular and molecular levels. In this context, we previously demonstrated that the P2X7 receptor antagonist, brilliant blue G, reduces neuroinflammation and ameliorates some of the pathological features of ALS in the SOD1-G93A mouse model. Here, we test the novel, noncommercially available, and centrally permeant Axxam proprietary P2X7 antagonist, AXX71, in SOD1-G93A mice, by assessing some behavioral and molecular parameters, among which are disease progression, survival, gliosis, and motor neuron wealth. We demonstrate that AXX71 affects the early symptomatic phase of the disease by reducing microglia-related proinflammatory markers and autophagy without affecting the anti-inflammatory markers or motor neuron survival. Our results suggest that P2X7 modulation can be further investigated as a therapeutic strategy in preclinical studies, and exploited in ALS clinical trials.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Autofagia/efeitos dos fármacos , Progressão da Doença , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Anti-Inflamatórios/farmacocinética , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Atividade Motora/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Receptores Purinérgicos P2X/metabolismo
3.
J Psychopharmacol ; 34(9): 1030-1042, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32248747

RESUMO

BACKGROUND: This is the first report of the pharmacodynamic (PD) effects of the selective, potent and brain-penetrant P2X7 receptor (P2X7R) antagonist JNJ-54175446. Activation of the P2X7R, an adenosine triphosphate-gated ion channel, leads to the production of pro-inflammatory cytokines, which have been linked to neuroinflammation and play a role in the pathogenesis of mood disorders. Previous clinical studies with JNJ-54175446 demonstrated peripheral target engagement of JNJ-54175446 by assessing ex vivo lipopolysaccharide (LPS)-stimulated cytokine production. Blood-brain barrier penetration and a clear dose-receptor occupancy relationship was demonstrated using positron emission tomography. AIMS: The objectives of this double-blind, placebo-controlled, translational study were to assess the safety and tolerability of administering multiple doses of JNJ-54175446 and to explore its PD effects using a dexamphetamine challenge. METHODS: Subjects (N = 64) were randomised to either JNJ-54175446 (50-450 mg; n = 48) or placebo (n = 16) and underwent a baseline oral 20 mg dexamphetamine challenge followed by 11 consecutive days q.d. dosing with JNJ-54175446/placebo and a randomised crossover dexamphetamine/placebo challenge. RESULTS: At all doses tested, JNJ-54175446 was well tolerated and suppressed the ex vivo LPS-induced release of cytokines. At doses ⩾100 mg, JNJ-54175446 attenuated dexamphetamine-induced increases in locomotion and enhanced the mood-elevating effects of dexamphetamine, suggesting that a dose that is approximately twice as high is needed to obtain a central PD response compared to the dose needed for maximum peripheral occupancy. CONCLUSION: Overall, the observed pharmacological profile of JNJ-54175446 in the dexamphetamine challenge paradigm is compatible with a potential mood-modulating effect.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Dextroanfetamina/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Triazóis/farmacologia , Adolescente , Adulto , Estimulantes do Sistema Nervoso Central/administração & dosagem , Transtorno Depressivo Maior/tratamento farmacológico , Dextroanfetamina/administração & dosagem , Método Duplo-Cego , Eletroencefalografia , Humanos , Inflamação/tratamento farmacológico , Masculino , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Antagonistas do Receptor Purinérgico P2X/efeitos adversos , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Piridinas/administração & dosagem , Piridinas/efeitos adversos , Piridinas/farmacocinética , Pesquisa Translacional Biomédica , Triazóis/administração & dosagem , Triazóis/efeitos adversos , Triazóis/farmacocinética , Adulto Jovem
4.
Clin Transl Sci ; 13(2): 309-317, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31642608

RESUMO

Positron emission tomography (PET) provides useful information in target engagement or receptor occupancy in the brain for central nervous system (CNS) drug development, however, dose selection for human PET studies is challenging and largely empirical. Here, we describe a translational pharmacokinetic/pharmacodynamic (PK/PD) modeling work to inform dose selection for a human PET study of JNJ-54175446, a CNS-penetrating P2X7 receptor antagonist. Models were developed using data on monkey brain occupancy and plasma drug exposures from a monkey PET study and early human clinical studies that provided data on drug exposures and human ex vivo-stimulated peripheral interleukin (IL)-1ß release. The observed plasma PK of JNJ-54175446 in human was adequately described by a one-compartment model with parallel zero-order and first-order absorption and first-order elimination. An exposure-occupancy model was extrapolated from monkey to human assuming a similar unbound potency (all other model parameters remained unchanged). This model was then used to simulate human brain occupancy to guide human PET study dose selection, together with the human population PK model. The corroboration of model predicted occupancy by the observed occupancy data from the human PET study supports the use of a monkey as a predictive model for human PET target engagement. Potency estimate for brain occupancy was generally comparable to that for the suppression of the provoked peripheral IL-1ß release ex vivo, indicating that blood IL-1ß release may be used as a surrogate of central occupancy for JNJ-54175446. Translational PK/PD modeling approach could be used for selecting optimal doses for human PET and other clinical studies.


Assuntos
Tomografia por Emissão de Pósitrons , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Piridinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Receptores Purinérgicos P2X7/metabolismo , Triazóis/farmacocinética , Adolescente , Adulto , Idoso , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ensaios Clínicos Fase I como Assunto , Simulação por Computador , Conjuntos de Dados como Assunto , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos/métodos , Feminino , Radioisótopos de Flúor/administração & dosagem , Humanos , Interleucina-1beta/metabolismo , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Piridinas/administração & dosagem , Cintilografia , Compostos Radiofarmacêuticos/administração & dosagem , Ensaios Clínicos Controlados Aleatórios como Assunto , Triazóis/administração & dosagem , Adulto Jovem
5.
Expert Opin Ther Pat ; 29(12): 943-963, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31726893

RESUMO

Introduction: Purinergic P2X3-P2X2/3 receptors are placed in nociceptive neurons' strategic location and show unique desensitization properties; hence, they represent an attractive target for many pain-related diseases. Therefore, a broad interest from academic and pharmaceutical scientists has focused on the search for P2X3 and P2X2/3 receptor ligands and has led to the discovery of numerous new selective antagonists. Some of them have been studied in clinical trials for the treatment of pathological conditions such as bladder disorders, gastrointestinal and chronic obstructive pulmonary diseases.Areas covered: This review provides a summary of the patents concerning the discovery of P2X3 and/or P2X2/3 receptor antagonists published between 2015 and 2019 and their potential clinical use. Thus, the structures and biological data of the most representative molecules are reported.Expert opinion: The 2016 publication of the crystallographic structure of the human P2X3 receptor subtype gave an improvement of published patents in 2017. Hence, a great number of small molecules with dual antagonist activity on P2X3-P2X2/3 receptors, a favorable pharmacokinetic profile, and reasonable oral bioavailability was discovered. The most promising compounds are the phenoxy-diaminopyrimidines including gefapixant (AF-219), and the imidazo-pyridines like BLU-5937, which are in phase III and phase II clinical trials, respectively, for refractory chronic cough.


Assuntos
Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X2/efeitos dos fármacos , Receptores Purinérgicos P2X3/efeitos dos fármacos , Animais , Tosse/tratamento farmacológico , Tosse/patologia , Descoberta de Drogas , Humanos , Dor/tratamento farmacológico , Dor/patologia , Patentes como Assunto , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X3/metabolismo
6.
Br J Pharmacol ; 176(13): 2279-2291, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30927255

RESUMO

BACKGROUND AND PURPOSE: The P2X3 receptor is an ATP-gated ion channel expressed by sensory afferent neurons and is used as a target to treat chronic sensitisation conditions. The first-in-class, selective P2X3 and P2X2/3 receptor antagonist, the diaminopyrimidine MK-7264 (gefapixant), has progressed to Phase III trials for refractory or unexplained chronic cough. We used patch clamp to elucidate the pharmacology and kinetics of MK-7264 and rat models of hypersensitivity and hyperalgesia to test its efficacy on these conditions. EXPERIMENTAL APPROACH: Whole-cell patch clamp of 1321N1 cells expressing human P2X3 and P2X2/3 receptors was used to determine mode of MK-7264 action, potency, and kinetics. The analgesic efficacy was assessed using paw withdrawal threshold and limb weight distribution in rat models of inflammatory, osteoarthritic, and neuropathic sensitisation. KEY RESULTS: MK-7264 is a reversible allosteric antagonist at human P2X3 and P2X2/3 receptors. Experiments with the slowly desensitising P2X2/3 heteromer revealed concentration- and state-dependency to wash-on, with faster rates and greater inhibition when applied before agonist compared to during agonist application. The wash-on rate (τ value) for MK-7264 at maximal concentrations was much lower when applied before compared to during agonist application. In vivo, MK-7264 displayed efficacy comparable to naproxen in inflammatory and osteoarthritic sensitisation models and gabapentin in neuropathic sensitisation models, increasing paw withdrawal threshold and decreasing weight-bearing discomfort. CONCLUSIONS AND IMPLICATIONS: MK-7264 is a reversible and selective P2X3 and P2X2/3 antagonist, exerting allosteric antagonism via preferential activity at closed channels. Its efficacy in rat models supports its clinical investigation for chronic sensitisation conditions.


Assuntos
Carbolinas , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X , Receptores Purinérgicos P2X2/fisiologia , Receptores Purinérgicos P2X3/fisiologia , Animais , Carbolinas/sangue , Carbolinas/farmacocinética , Carbolinas/farmacologia , Carbolinas/uso terapêutico , Linhagem Celular Tumoral , Feminino , Adjuvante de Freund , Humanos , Hiperalgesia/induzido quimicamente , Ácido Iodoacético , Osteoartrite/induzido quimicamente , Estimulação Física , Antagonistas do Receptor Purinérgico P2X/sangue , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Ratos Sprague-Dawley , Nervo Isquiático/lesões
7.
Bioorg Med Chem Lett ; 29(5): 688-693, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30728111

RESUMO

Some P2X3 receptor antagonists have been developed as new therapeutic drugs for pain. We discovered a novel chemotype of P2X3 receptor antagonists with a pyrrolinone skeleton. Because of SAR studies to improve bioavailability of lead compound 2, compound (R)-24 was identified, which showed an analgesic effect against neuropathic pain by oral administration. We constructed a human P2X3 homology model as a template for the zebrafish P2X4 receptor, which agreed with SAR studies of pyrrolinone derivatives.


Assuntos
Antagonistas do Receptor Purinérgico P2X/farmacologia , Pirróis/farmacologia , Receptores Purinérgicos P2X3/efeitos dos fármacos , Administração Oral , Disponibilidade Biológica , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Neuralgia/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Relação Estrutura-Atividade
8.
J Psychopharmacol ; 32(12): 1341-1350, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30260294

RESUMO

BACKGROUND: Central nervous system-derived interleukin-1ß plays a role in mood disorders. P2X7 receptor activation by adenosine-triphosphate leads to the release of interleukin-1ß. AIMS: This first-in-human study evaluated safety, tolerability, pharmacokinetics and pharmacodynamics of a novel central nervous system-penetrant P2X7 receptor antagonist, JNJ-54175446, in healthy participants. METHODS: The study had three parts: an ascending-dose study in fasted participants (0.5-300 mg JNJ-54175446); an ascending-dose study in fed participants (50-600 mg); and a cerebrospinal fluid study (300 mg). Target plasma concentrations were based on estimated plasma effective concentration (EC)50 (105 ng/mL) and EC90 (900 ng/mL) values for central nervous system P2X7 receptor binding. RESULTS: Seventy-seven participants received a single oral dose of JNJ-54175446 ( n=59) or placebo ( n=18). Area under the curve of concentration time extrapolated to infinity (AUC∞) increased dose-proportionally; maximum concentration (Cmax) of plasma (Cmax,plasma) increased less than dose-proportionally following single doses of JNJ-54175446. Because food increases bioavailability of JNJ-54175446, higher doses were given with food to evaluate safety at higher exposures. The highest Cmax,plasma reached (600 mg, fed) was 1475±163 ng/mL. JNJ-54175446 Cmax in cerebrospinal fluid, a proxy for brain penetration, was seven times lower than in total plasma; unbound Cmax,plasma and Cmax,CSF were comparable (88.3±35.7 vs 114±39 ng/mL). JNJ-54175446 inhibited lipopolysaccharide/3'-O-(4-benzoylbenzoyl)-ATP-induced interleukin-1ß release from peripheral blood in a dose-dependent manner (inhibitory concentration (IC)50:82 ng/mL; 95% confidence interval: 48-94). Thirty-three of 59 (55.9%) participants reported at least one treatment-emergent adverse event; the most common adverse event being headache (11/59, 18.6%). CONCLUSION: Plasma exposure of JNJ-54175446 was dose-dependent. No serious adverse events occurred. Single-dose administration of JNJ-54175446>10 mg attenuated ex-vivo lipopolysaccharide-induced interleukin-1ß release in peripheral blood. Passive brain penetration of JNJ-54175446 was confirmed.


Assuntos
Encéfalo/metabolismo , Interleucina-1beta/metabolismo , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Piridinas/administração & dosagem , Triazóis/administração & dosagem , Administração Oral , Adolescente , Adulto , Idoso , Área Sob a Curva , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Interações Alimento-Droga , Humanos , Concentração Inibidora 50 , Lipopolissacarídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacocinética , Piridinas/farmacologia , Distribuição Tecidual , Triazóis/farmacocinética , Triazóis/farmacologia , Adulto Jovem
9.
Sci Rep ; 8(1): 6580, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700413

RESUMO

The P2X7 receptor plays a significant role in microglial activation, and as a potential drug target, the P2X7 receptor is also an interesting target in positron emission tomography. The current study aimed at the development and evaluation of a potent tracer targeting the P2X7 receptor, to which end four adamantanyl benzamide analogues with high affinity for the human P2X7 receptor were labelled with carbon-11. All four analogues could be obtained in excellent radiochemical yield and high radiochemical purity and molar activity, and all analogues entered the rat brain. [11C]SMW139 showed the highest metabolic stability in rat plasma, and showed high binding to the hP2X7 receptor in vivo in a hP2X7 receptor overexpressing rat model. Although no significant difference in binding of [11C]SMW139 was observed between post mortem brain tissue of Alzheimer's disease patients and that of healthy controls in in vitro autoradiography experiments, [11C]SMW139 could be a promising tracer for P2X7 receptor imaging using positron emission tomography, due to high receptor binding in vivo in the hP2X7 receptor overexpressing rat model. However, further investigation of both P2X7 receptor expression and binding of [11C]SMW139 in other neurological diseases involving microglial activation is warranted.


Assuntos
Microglia/metabolismo , Imagem Molecular , Tomografia por Emissão de Pósitrons , Antagonistas do Receptor Purinérgico P2X/química , Compostos Radiofarmacêuticos/química , Receptores Purinérgicos P2X7/química , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Microglia/efeitos dos fármacos , Estrutura Molecular , Tomografia por Emissão de Pósitrons/métodos , Ligação Proteica , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Radioquímica , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Coloração e Rotulagem , Distribuição Tecidual
10.
Bioorg Med Chem Lett ; 28(8): 1392-1396, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29548573
11.
J Med Chem ; 61(1): 207-223, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29211470

RESUMO

A single pot dipolar cycloaddition reaction/Cope elimination sequence was developed to access novel 1,4,6,7-tetrahydro-5H-[1,2,3]triazolo[4,5-c]pyridine P2X7 antagonists that contain a synthetically challenging chiral center. The structure-activity relationships of the new compounds are described. Two of these compounds, (S)-(2-fluoro-3-(trifluoromethyl)phenyl)(1-(5-fluoropyrimidin-2-yl)-6-methyl-1,4,6,7-tetrahydro-5H-[1,2,3]triazolo[4,5-c]pyridin-5-yl)methanone (compound 29) and (S)-(3-fluoro-2-(trifluoromethyl)pyridin-4-yl)(1-(5-fluoropyrimidin-2-yl)-6-methyl-1,4,6,7-tetrahydro-5H-[1,2,3]triazolo[4,5-c]pyridin-5-yl)methanone (compound 35), were found to have robust P2X7 receptor occupancy at low doses in rat with ED50 values of 0.06 and 0.07 mg/kg, respectively. Compound 35 had notable solubility compared to 29 and showed good tolerability in preclinical species. Compound 35 was chosen as a clinical candidate for advancement into phase I clinical trials to assess safety and tolerability in healthy human subjects prior to the initiation of proof of concept studies for the treatment of mood disorders.


Assuntos
Desenho de Fármacos , Antagonistas do Receptor Purinérgico P2X/síntese química , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/síntese química , Piridinas/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Animais , Reação de Cicloadição , Cães , Humanos , Masculino , Camundongos , Modelos Moleculares , Conformação Molecular , Antagonistas do Receptor Purinérgico P2X/química , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Piridinas/química , Piridinas/farmacocinética , Ratos , Estereoisomerismo , Distribuição Tecidual
12.
Int J Neuropsychopharmacol ; 20(9): 683-691, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28911007

RESUMO

Background: [11C]Cimbi-36 is a serotonin 2A receptor agonist positron emission tomography radioligand that has recently been examined in humans. The binding of agonist radioligand is expected to be more sensitive to endogenous neurotransmitter concentrations than antagonist radioligands. In the current study, we compared the effect of serotonin releaser fenfluramine on the binding of [11C]Cimbi-36, [11C]MDL 100907 (a serotonin 2A receptor antagonist radioligand), and [11C]AZ10419369 (a serotonin 1B receptor partial agonist radioligand with established serotonin sensitivity) in the monkey brain. Methods: Eighteen positron emission tomography measurements, 6 for each radioligand, were performed in 3 rhesus monkeys before or after administration of 5.0 mg/kg fenfluramine. Binding potential values were determined with the simplified reference tissue model using cerebellum as the reference region. Results: Fenfluramine significantly decreased [11C]Cimbi-36 (26-62%) and [11C]AZ10419369 (35-58%) binding potential values in most regions (P < 0.05). Fenfluramine-induced decreases in [11C]MDL 100907 binding potential were 8% to 30% and statistically significant in 3 regions. Decreases in [11C]Cimbi-36 binding potential were larger than for [11C]AZ10419369 in neocortical and limbic regions (~35%) but smaller in striatum and thalamus (~40%). Decreases in [11C]Cimbi-36 binding potential were 0.9 to 2.8 times larger than for [11C]MDL 100907, and the fraction of serotonin 2A receptor in the high-affinity state was estimated as 54% in the neocortex. Conclusions: The serotonin sensitivity of serotonin 2A receptor agonist radioligand [11C]Cimbi-36 was higher than for antagonist radioligand [11C]MDL 100907. The serotonin sensitivity of [11C]Cimbi-36 was similar to [11C]AZ10419369, which is one of the most sensitive radioligands. [11C]Cimbi-36 is a promising radioligand to examine serotonin release in the primate brain.


Assuntos
Benzilaminas/farmacocinética , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Fenfluramina/farmacologia , Fenetilaminas/farmacocinética , Receptor 5-HT2A de Serotonina/metabolismo , Serotoninérgicos/farmacologia , Adamantano/análogos & derivados , Adamantano/farmacocinética , Aminoquinolinas/farmacocinética , Animais , Mapeamento Encefálico , Relação Dose-Resposta a Droga , Feminino , Fenfluramina/sangue , Fluorbenzenos/farmacocinética , Macaca mulatta , Imageamento por Ressonância Magnética , Piperidinas/farmacocinética , Tomografia por Emissão de Pósitrons , Ligação Proteica/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/farmacocinética
13.
ACS Chem Neurosci ; 8(11): 2374-2380, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28841278

RESUMO

Adamantanyl benzamide 1 was identified as a potent P2X7R antagonist but failed to progress further due to poor metabolic stability. We describe the synthesis and SAR of a series of bioisosteres of benzamide 1 to explore improvements in the pharmacological properties of this lead. Initial efforts investigated a series of heteroaromatic bioisosteres, which demonstrated improved physicochemical properties but reduced P2X7R antagonism. Installation of bioisosteric fluorine on the adamantane bridgeheads was well tolerated and led to a series of bioisosteres with improved physicochemical properties and metabolic stability. Trifluorinated benzamide 34 demonstrated optimal physicochemical parameters, superior metabolic stability (ten times longer than lead benzamide 1), and an improved physicokinetic profile and proved effective in the presence of several known P2X7R polymorphisms.


Assuntos
Adamantano/análogos & derivados , Benzamidas/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/efeitos dos fármacos , Adamantano/farmacologia , Animais , Benzamidas/síntese química , Benzamidas/química , Benzamidas/farmacocinética , Biotransformação , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Humanos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Oxirredução , Polimorfismo de Nucleotídeo Único , Antagonistas do Receptor Purinérgico P2X/síntese química , Antagonistas do Receptor Purinérgico P2X/química , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Ratos , Receptores Purinérgicos P2X7/genética , Relação Estrutura-Atividade
14.
J Med Chem ; 60(11): 4559-4572, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28493698

RESUMO

The synthesis and preclinical characterization of novel 4-(R)-methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridines that are potent and selective brain penetrant P2X7 antagonists are described. Optimization efforts based on previously disclosed unsubstituted 6,7-dihydro-4H-triazolo[4,5-c]pyridines, methyl substituted 5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-a]pyrazines, and several other series lead to the identification of a series of 4-(R)-methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridines that are selective P2X7 antagonists with potency at the rodent and human P2X7 ion channels. These novel P2X7 antagonists have suitable physicochemical properties, and several analogs have an excellent pharmacokinetic profile, good partitioning into the CNS and show robust in vivo target engagement after oral dosing. Improvements in metabolic stability led to the identification of JNJ-54175446 (14) as a candidate for clinical development. The drug discovery efforts and strategies that resulted in the identification of the clinical candidate are described herein.


Assuntos
Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Receptores Purinérgicos P2X7/efeitos dos fármacos , Animais , Disponibilidade Biológica , Humanos , Antagonistas do Receptor Purinérgico P2X/farmacocinética
15.
Biochem Pharmacol ; 138: 130-139, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28479300

RESUMO

Diabetic retinopathy (DR) is the most frequent complication of diabetes and one of leading causes of blindness worldwide. Early phases of DR are characterized by retinal pericyte loss mainly related to concurrent inflammatory process. Recently, an important link between P2X7 receptor (P2X7R) and inflammation has been demonstrated indicating this receptor as potential pharmacological target in DR. Here we first carried out an in silico molecular modeling study in order to characterize the allosteric pocket in P2X7R, and identify a suitable P2X7R antagonist through molecular docking. JNJ47965567 was identified as the hit compound in docking calculations, as well as for its absorption, distribution, metabolism and excretion (ADME) profile. As an in vitro model of early diabetic retinopathy, human retinal pericytes were exposed to high glucose (25mM, 48h) that caused a significant (p<0.05) release of IL-1ß and LDH. The block of P2X7R by JNJ47965567 significantly (p<0.05) reverted the damage elicited by high glucose, detected as IL-1ß and LDH release. Overall, our findings suggest that the P2X7R represents an attractive pharmacological target to manage the early phase of diabetic retinopathy, and the compound JNJ47965567 is a good template to discover other P2X7R selective antagonists.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Retinopatia Diabética/tratamento farmacológico , Modelos Moleculares , Niacinamida/análogos & derivados , Pericitos/efeitos dos fármacos , Piperazinas/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Sítio Alostérico/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacocinética , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Células Cultivadas , Biologia Computacional , Bases de Dados de Compostos Químicos , Bases de Dados de Proteínas , Retinopatia Diabética/imunologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Sistemas Inteligentes , Humanos , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Niacinamida/química , Niacinamida/metabolismo , Niacinamida/farmacocinética , Niacinamida/farmacologia , Pericitos/imunologia , Pericitos/metabolismo , Pericitos/patologia , Piperazinas/química , Piperazinas/metabolismo , Piperazinas/farmacocinética , Antagonistas do Receptor Purinérgico P2X/química , Antagonistas do Receptor Purinérgico P2X/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Curva ROC , Receptores Purinérgicos P2X7/química , Homologia Estrutural de Proteína
16.
ACS Chem Neurosci ; 8(7): 1465-1478, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28323403

RESUMO

Antagonism of the P2X3 receptor is one of the potential therapeutic strategies for the management of neuropathic pain because P2X3 receptors are predominantly localized on small to medium diameter C- and Aδ-fiber primary afferent neurons, which are related to the pain-sensing system. In this study, 5-hydroxy pyridine derivatives were designed, synthesized, and evaluated for their in vitro biological activities by two-electrode voltage clamp assay at hP2X3 receptors. Among the novel hP2X3 receptor antagonists, intrathecal treatment of compound 29 showed parallel efficacy with pregabalin (calcium channel modulator) and higher efficacy than AF353 (P2X3 receptor antagonist) in the evaluation of its antiallodynic effects in spinal nerve ligation rats. However, because compound 29 was inactive by intraperitoneal administration in neuropathic pain animal models due to low cell permeability, the corresponding methyl ester analogue, 28, which could be converted to compound 29 in vivo, was investigated as a prodrug concept. Intravenous injection of compound 28 resulted in potent antiallodynic effects, with ED50 values of 2.62 and 2.93 mg/kg in spinal nerve ligation and chemotherapy-induced peripheral neuropathy rats, respectively, indicating that new drug development targeting the P2X3 receptor could be promising for neuropathic pain, a disease with high unmet medical needs.


Assuntos
Analgésicos não Narcóticos/farmacologia , Neuralgia/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Analgésicos não Narcóticos/síntese química , Analgésicos não Narcóticos/química , Analgésicos não Narcóticos/farmacocinética , Animais , Antineoplásicos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Células HEK293 , Humanos , Ligadura , Masculino , Camundongos , Estrutura Molecular , Neuralgia/metabolismo , Oócitos , Técnicas de Patch-Clamp , Permeabilidade , Antagonistas do Receptor Purinérgico P2X/síntese química , Antagonistas do Receptor Purinérgico P2X/química , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Piridinas/síntese química , Piridinas/química , Piridinas/farmacocinética , Ratos , Receptores Purinérgicos P2X3/metabolismo , Nervos Espinhais , Relação Estrutura-Atividade , Xenopus
17.
J Med Chem ; 59(18): 8535-48, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27548392

RESUMO

The synthesis and SAR of a series of 4,5,6,7-tetrahydro-imidazo[4,5-c]pyridine P2X7 antagonists are described. Addressing P2X7 affinity and liver microsomal stability issues encountered with this template afforded methyl substituted 4,5,6,7-tetrahydro-imidazo[4,5-c]pyridines ultimately leading to the identification of 1 (JNJ 54166060). 1 is a potent P2X7 antagonist with an ED50 = 2.3 mg/kg in rats, high oral bioavailability and low-moderate clearance in preclinical species, acceptable safety margins in rats, and a predicted human dose of 120 mg of QD. Additionally, 1 possesses a unique CYP profile and was found to be a regioselective inhibitor of midazolam CYP3A metabolism.


Assuntos
Antagonistas do Receptor Purinérgico P2X/química , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/química , Piridinas/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Administração Oral , Animais , Cães , Halogenação , Haplorrinos , Humanos , Imidazóis/administração & dosagem , Imidazóis/química , Imidazóis/farmacocinética , Imidazóis/farmacologia , Camundongos , Modelos Moleculares , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Piridinas/administração & dosagem , Piridinas/farmacocinética , Ratos
18.
Bioorg Med Chem Lett ; 26(16): 3838-45, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27426304

RESUMO

The P2X7 receptor is an ATP-gated nonselective cation channel that has been linked to a number of inflammatory diseases. Activation of the P2X7 receptor by elevated levels of ATP results in the release of proinflammatory cytokines and elevated levels of these cytokines has been associated with a variety of disease states. A number of research groups in both industry and academia have explored the identification of P2X7R antagonists as therapeutic agents. Much of this early effort focused on the treatment of diseases related to peripheral inflammation and resulted in several clinical candidates, none of which were advanced to market. The emerging role of the P2X7 receptor in neuroinflammation and related diseases has resulted in a shift in medicinal chemistry efforts toward the development of centrally penetrant antagonists. This review will highlight the biology supporting the role of P2X7 in diseases related to neuroinflammation and review the recent medicinal chemistry efforts to identify centrally penetrant antagonists.


Assuntos
Antagonistas do Receptor Purinérgico P2X/química , Receptores Purinérgicos P2X7/metabolismo , Animais , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/metabolismo , Ensaios Clínicos como Assunto , Citocinas/metabolismo , Meia-Vida , Humanos , Inflamação/prevenção & controle , Ligação Proteica , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X7/química
19.
Bioorg Med Chem Lett ; 26(2): 257-261, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26707399

RESUMO

The synthesis, SAR, and preclinical characterization of a series of substituted 6,7-dihydro[1,2,4]triazolo[4,3]pyrazin-8(5H)-one P2X7 receptor antagonists are described. Optimized leads from this series comprise some of the most potent human P2X7R antagonists reported to date (IC50s<1nM). They also exhibit sufficient potency and oral bioavailability in rat to enable extensive in vivo profiling. Although many of the disclosed compounds are peripherally restricted, compound 11d is brain penetrant and upon oral administration demonstrated dose-dependent target engagement in rat hippocampus as determined by ex vivo receptor occupancy with radiotracer 5 (ED50=0.8mg/kg).


Assuntos
Fármacos do Sistema Nervoso Central/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Pirazinas/farmacologia , Triazóis/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Células CACO-2 , Fármacos do Sistema Nervoso Central/síntese química , Fármacos do Sistema Nervoso Central/farmacocinética , Hipocampo/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Antagonistas do Receptor Purinérgico P2X/síntese química , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Pirazinas/síntese química , Pirazinas/farmacocinética , Ratos , Receptores Purinérgicos P2X7/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/farmacocinética , Trítio
20.
Bioorg Med Chem Lett ; 25(16): 3157-63, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26099534

RESUMO

The optimization efforts that led to a novel series of methyl substituted 1-(5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)methanones that are potent rat and human P2X7 antagonists are described. These efforts resulted in the discovery of compounds with good drug-like properties that are capable of high P2X7 receptor occupancy in rat following oral administration, including compounds 7n (P2X7 IC50 = 7.7 nM) and 7u (P2X7 IC50 =7 .7 nM). These compounds are expected to be useful tools for characterizing the effects of P2X7 antagonism in models of depression and epilepsy, and several of the compounds prepared are candidates for effective P2X7 PET tracers.


Assuntos
Antagonistas do Receptor Purinérgico P2X/química , Pirazinas/química , Receptores Purinérgicos P2X7/química , Triazóis/química , Animais , Meia-Vida , Humanos , Microssomos/metabolismo , Ligação Proteica , Antagonistas do Receptor Purinérgico P2X/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Ratos , Receptores Purinérgicos P2X7/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA